3.10.79 \(\int \frac {1}{x^4 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx\) [979]

Optimal. Leaf size=307 \[ -\frac {2 d (b c+a d) x \sqrt {a+b x^2}}{3 a^2 c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3}+\frac {2 (b c+a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a^2 c^2 x}+\frac {2 \sqrt {d} (b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {b \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

-2/3*d*(a*d+b*c)*x*(b*x^2+a)^(1/2)/a^2/c^2/(d*x^2+c)^(1/2)+2/3*(a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/
2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a^2/c^(3/2)/(c*(b*
x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-1/3*b*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^
(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a^2/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)
/(d*x^2+c)^(1/2)-1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/a/c/x^3+2/3*(a*d+b*c)*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/a^2
/c^2/x

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 307, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {491, 597, 545, 429, 506, 422} \begin {gather*} \frac {2 \sqrt {d} \sqrt {a+b x^2} (a d+b c) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 c^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b \sqrt {d} \sqrt {a+b x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {2 \sqrt {a+b x^2} \sqrt {c+d x^2} (a d+b c)}{3 a^2 c^2 x}-\frac {2 d x \sqrt {a+b x^2} (a d+b c)}{3 a^2 c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(-2*d*(b*c + a*d)*x*Sqrt[a + b*x^2])/(3*a^2*c^2*Sqrt[c + d*x^2]) - (Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*a*c*x^
3) + (2*(b*c + a*d)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*a^2*c^2*x) + (2*Sqrt[d]*(b*c + a*d)*Sqrt[a + b*x^2]*El
lipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a^2*c^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sq
rt[c + d*x^2]) - (b*Sqrt[d]*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a^2*Sq
rt[c]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 491

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx &=-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3}+\frac {\int \frac {-2 (b c+a d)-b d x^2}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a c}\\ &=-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3}+\frac {2 (b c+a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a^2 c^2 x}-\frac {\int \frac {a b c d+2 b d (b c+a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a^2 c^2}\\ &=-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3}+\frac {2 (b c+a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a^2 c^2 x}-\frac {(b d) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a c}-\frac {(2 b d (b c+a d)) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a^2 c^2}\\ &=-\frac {2 d (b c+a d) x \sqrt {a+b x^2}}{3 a^2 c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3}+\frac {2 (b c+a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a^2 c^2 x}-\frac {b \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {(2 d (b c+a d)) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 a^2 c}\\ &=-\frac {2 d (b c+a d) x \sqrt {a+b x^2}}{3 a^2 c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c x^3}+\frac {2 (b c+a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a^2 c^2 x}+\frac {2 \sqrt {d} (b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {b \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.80, size = 229, normalized size = 0.75 \begin {gather*} \frac {\sqrt {\frac {b}{a}} \left (a+b x^2\right ) \left (c+d x^2\right ) \left (-a c+2 b c x^2+2 a d x^2\right )+2 i b c (b c+a d) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i b c (2 b c+a d) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 a^2 \sqrt {\frac {b}{a}} c^2 x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[b/a]*(a + b*x^2)*(c + d*x^2)*(-(a*c) + 2*b*c*x^2 + 2*a*d*x^2) + (2*I)*b*c*(b*c + a*d)*x^3*Sqrt[1 + (b*x^
2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(2*b*c + a*d)*x^3*Sqrt[1 + (b
*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*a^2*Sqrt[b/a]*c^2*x^3*Sqrt[a +
 b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 435, normalized size = 1.42

method result size
risch \(-\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (-2 a d \,x^{2}-2 c \,x^{2} b +a c \right )}{3 a^{2} c^{2} x^{3}}-\frac {b d \left (-\frac {\left (2 a d +2 b c \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}+\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{3 a^{2} c^{2} \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(315\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {\sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 a c \,x^{3}}+\frac {2 \left (a d +b c \right ) \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 a^{2} c^{2} x}-\frac {b d \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{3 a c \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {2 b \left (a d +b c \right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{3 a^{2} c \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(343\)
default \(\frac {\left (2 \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{6}+2 \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{6}+b d \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) x^{3} a c +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{3}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d \,x^{3}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{3}+2 \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{4}+3 \sqrt {-\frac {b}{a}}\, a b c d \,x^{4}+2 \sqrt {-\frac {b}{a}}\, b^{2} c^{2} x^{4}+\sqrt {-\frac {b}{a}}\, a^{2} c d \,x^{2}+\sqrt {-\frac {b}{a}}\, a b \,c^{2} x^{2}-\sqrt {-\frac {b}{a}}\, a^{2} c^{2}\right ) \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{3 x^{3} c^{2} \sqrt {-\frac {b}{a}}\, a^{2} \left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right )}\) \(435\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(2*(-b/a)^(1/2)*a*b*d^2*x^6+2*(-b/a)^(1/2)*b^2*c*d*x^6+b*d*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Ellipti
cF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^3*a*c+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),
(a*d/b/c)^(1/2))*b^2*c^2*x^3-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2
))*a*b*c*d*x^3-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*c^2*x^3
+2*(-b/a)^(1/2)*a^2*d^2*x^4+3*(-b/a)^(1/2)*a*b*c*d*x^4+2*(-b/a)^(1/2)*b^2*c^2*x^4+(-b/a)^(1/2)*a^2*c*d*x^2+(-b
/a)^(1/2)*a*b*c^2*x^2-(-b/a)^(1/2)*a^2*c^2)*(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)/x^3/c^2/(-b/a)^(1/2)/a^2/(b*d*x^4+
a*d*x^2+b*c*x^2+a*c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*x^4), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{4} \sqrt {a + b x^{2}} \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/(x**4*sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*x^4), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^4\,\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)),x)

[Out]

int(1/(x^4*(a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)), x)

________________________________________________________________________________________